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SUMMARY _Q;é

An analysis has been made of the geometrical characteristics of lunar orblts
which can be established from typlical earth-moon transfer trajectories. An
iterated two-body or patched-conic technique was used to relate the transfer-
trajectory injection conditions to the selenocentric orbital parameters through
a set of simultaneous transcendental equations. gSolutions to these equations
are presented for typical sets of injection conditions. These solutions suggest
an additional simplification in the analysis which results in a simple physical
understanding of the problem and also in some approximate, simple relationships
between the lunar orbital parameters and the transfer-trajectory characteristics.

In particular, it is shown that (unless changes in the orbital plane are
instituted) there is a minimum-inclination lunar orbit which can be established.
The value of this mininum inclination is given as a function of the injection
conditions and depends primarily on the injection flight-path angle and transfer-
trajectory inclination to the earth-moon plane. In addition, an approximate
equation is given which relates the lunar orbital inclination and nodal position
to the injection conditions; hence, only one of these two lunar orbital param-
eters can be chosen arbitrarily.

INTRODUCTION

Current plans for manned lunar missions include the establishment of a close
lunar orbit as a prerequisite to the lunar landing operation; in particular, the
establishment of a lunar orbit is an integral part of the luhar orbit rendezvous
technique. These plans have stimulated an interest in the types of lunar orbits
which can be established efficiently and which at the same time are consistent
with the overall mission requirements. For example, suppose a lunar orbit is
established prior to landing and that the exploration vehicle lands nearly in
this orbital plane, then the question of possible landing sites is closely
related to the geometrical characteristics of the permissible lunar orbits.

Of particular interest from the mission-requirement standpoint is the initi-
ation of a satisfactory earth-return trajectory. It is shown in reference 1 that
the achievement of such a trajectory, if initiated from a lunar orbit, is



instituted. Hence, if the lunar orbit rendezvous technique is utilized, the
lunar orbit must be established such that after the broper exploration time the
geometrical characteristics of the orbit are within the allowable band for satis-
factory, efficient return to earth.

An analysis was initiated at the NASA Langley Research Center to investigate
the geometrical characteristics of lunar orbits which can be established to be
consistent with typical constraints on the earth-to-moon transfer trajectory. A
"patched-conic" technique was used to relate the lunar orbital parameters to the
transfer—trajectory parameters through a set of transcendental equations. Some
solutions to these equations are presented for typical transfer trajectories.
These solutions motivate g further approximation which leads to a simpler set of
equations and a better Physical understanding of the problem.

SYMBOLS
D vector distance from center of earth to center of moon
éx,éy,éz unit vectors along X-, Y-, and Z-axes, respectively
h geocentric angular momentum vector
i inclination of selenocentric orbital plane to earth-moon plane
ig inclination of transfer-trajectony Plane to earth-moon plane
Zl,ml,nl direction cosines between Xm and X-, Y-, and Z-axes, respectively
lo,mp, np direction cosines between Yp and X-, Y-, and Z-axes, respectively
r geocentric position vector of vehicle at the sphere of influence
rg geocentric injection radius
R selenocentric position vector of vehicle at the sphere of influence
Rpr periselenian distance of selenocentric hyperbola
Ve geocentric velocity vector of vehicle
Vﬁ geocentric velocity vector of the moon
Vg selenocentric velocity vector of vehicle at the sphere of influence



(EL) ratio of injection velocity to parabolic velocity at the injection
o

p altitude
X,¥,% geocentric position components
k,&,i geocentric velocity components
*ms Ym selenocentric position components measured in the selenocentric
orbital plane
a nondimensional radius of the sphere of influence, R/D = 0.1498
B acute angle between R and Vs
75 injection flight-path angle
n latitude of entry point on sphere of influence
0 angular position in selenocentric orbital plane
A nondimensional velocity, VS/ Vi

u = cos n sin §

He gravitational constant of the earth
Moy gravitational constant of the moon
T approximate flight time from earth injection to periselenian point

v = cos 1 cos E

& angular position of entry point on the sphere of influence
Q longitude of node of selenocentric orbital plane

Qo longitude of node of transfer-trajectory plane

Subscripts:

X,¥,2 components along X-, Y-, and Z-aXes, respectively

n normal impact selenocentric trajectory

c center of locus of entry polnts

min minimum



ANALYSTS AND DISCUSSION

The characteristics of lunar orbits are directly dependent on the charac-
teristics of the earth-to-moon transfer trajectory from which they are estab-
lished. Hence, constraints imposed on the transfer trajectory by mission require-

that is, established without orbital transfers or plane changes. It would be
convenient to have explicit relationships between the €arth-injection parameters
and the lunar orbital elements S0 that the effects of these limitations might be
investigated; unfortunately, no exact analytical expressions have been found.
Numerical integration of the equations of motion of a vehicle in cislunar space
do not readily yield any general indications of these relationships; however,
these studies show that the lunar orbital characteristics can be changed appre-
ciably by making small changes in the transfer trajectory and thus a wide variety

trajectory.

Some approximations are required in order to obtain general analytical
information about the relations between the transfer—trajectory characteristics
and the lunar orbital characteristics. In this study, the earth and moon are
assumed to move in circular orbits at the mean distance of 238,857 miles and in
addition a patched-conic technique is utilized with g lunar sphere of influence
as defined in reference 2. While the vehicle is inside the imaginary selenocen-
tric sphere, the earth's gravitational effects on the vehicle are neglected and
when the vehicle is outside the sphere the moon's gravity is neglected. As illus-
trated in figure 1, the motion is represented by two conic sections, the first

Sphere of
lnfluence-\\

Selenocentric
hyperbola

\\Earth-moon.transfer
trajectory

4/l/;_jec’cion

point
Figure 1.~ Illustration of patched-conic technique.

geocentric and the second selenocentric, which are "patched" at the sphere of
influence to make the trajectory continuous. The utility of the above assump-
tions is that they reduce the problem from one defined by a system of differ-
ential equations to one defined by a set of transcendental equations. The solu-
tions to the latter equations are readily obtainegd by an iterative technique.



The patched-conic technique relates the characteristics of the transfer
trajectory to the characteristics of the selenocentric approach hyperbola; how-
ever, for the most efficient establishment of a lunar orbit, the lunar orbital
plane should coincilde with the plane of the selenocentric hyperbola, and as indi-
cated in reference 3, the orbit should be established when the vehicle is near
periselenian and such that the periselenlan point of the resulting lunar orbit
nearly coincides with the periselenian point of the approach hyperbola. Under
these conditions, the geometrical characteristics (inclination, nodal position,
and altitude at periselenian) of the lunar orbit are the same as the character-
istics of the selenocentric hyperbola from which the orbit is established; there-
fore, a study of the geometry of the approach hyperbola is equivalent to studying
the geometry of the resulting lunar orbit.

General Equations and Solution

In a patched-conic technique the geocentric (?, Ve) and selenocentric
(ﬁ, Vs position and velocity vectors at the sphere of influence are expressed
in terms of the respective orbital parameters. Then to insure that the trajec-
tory is continuous &across the sphere of influence,_the position and velocity
vectors are related by T =R +D and Ve =Vg + Vp. These equations give the

required number of relationships so that the selenocentric orbital elements can
be determined from the geocentric orbital elements. By utilizing these equa-
tions, the position of the entry point (i.e., the point where the vehicle passes
through the sphere of influence) relstive to the earth can be given in terms of
the position relative to the moon by

X = Rll + D
y = Rmg (1)
7 = Rnl

where, as indicated in figure 2, the coordinate system is chosen with the origin
at the earth's center, the X-axis points in the direction of the moon at the

time the vehicle passes through the sphere of influence, and the Z-axis is normal
to the earth-moon plane.

The velocity components at the entry point are related by

X Vs(lg sin B - 1, cos B)

1t

y Vs(mg sin B - my cos B> + Vg (2)

z

Vs(n2 sin B - nq coOS B)

where B is the acute angle between R and vé and where the direction cosines
are expressed in terms of the angles illustrated in figure 2
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Flgure 2.- Illustration of coordinate system and angular parameters.

1] =cos 6 cos @ - sin @ sin O cos i
lp = ~-5in 8 cos Q ~ cos 8 sin N cos i
m = cos 8 sin Q + sin 6 cos O cos i
my, = -sin 6 sin O + cos 6 cos O cos i
ny = sin 6 sin 1
Ny = cos 6 sin 1

The geocentric velocity and position vectors of the vehicle at the sphere
of influence are related to the transfer-trajectory injection conditions through
the laws of conservation of energy and angular momentum; namely,

2 e -
i <EL> -1 = (%@ 4+ ¥2 + 32) - 2pe(x2 + y2 + 22) 1/2

s 1 \Wp/o

hy = h sin i, sin Qy = yz - zy (3)
hy = -h sin iy cos 0, = zx - x2

h, =h cos 1, = xy - yx



where the total geocentric angular momentum is given by

N e A
h = 2pero<v > cos 7
o

D

The inclination iy and the nodal position &, of the transfer-trajectory plane

are measured relative to the coordinate system in figure 2 and in a manner
directly analogous to i and @ for the lunar orbital plane. Substituting
equations (1) and (2) into the right-hand side of egquations (%) gives the seleno-
centric orbital parameters (Vg, 6, &, 1, B) on the right in terms of the

transfer-trajectory parameters (7., To; <%L) ; 1g, fo) On the left;
P/s
explicitly,
2
2He (v 2 2 .
T (V;) -1 =Vg +V, - 2VSVm(ml cos B - my, sin B)
o
-1/2
21 2 /

- =1+ RY + 2B 5]
D D D

h sin i, sin O, = (RVg sin B sin O - RVp sin 6)sin 1
b sin ig cos fo = |RVs sin B cos @ - DVg sin(8 - p)] sin 1

h cos ig = —DVS[EOS(G - B)sin Q + sin(8 - B)cos Q cos ij + RVs sin B cos i

+ DVp + RVplcos 8 cos @ - sin 6 sin i cos i]

For manned lunar missions it is generally required that the selenccentric
hyperbola have a specified periselenian distance, Rp. This condition provides

a relationship between Vg and p obtained from the conservation of energy and
angular momentum relative to the moon; namely,

2
sin B = <%§> 1+ ng(l - EE) (4)

RpVs




Hence, by assuming that R, is fixed, equations (3) and (&) are sufficient to

solve for the five selenocentric orbital parameters in terms of the transfer-
trajectory parameters. However, it 1s not convenient to solve the equations in
this form because, in general, solutions exist for only a limited range of j.
For example, if i, 1s 90° there are obviously values of (g such that the
transfer-trajectory plane would not intersect the sphere of influence. To over-
come this type of difficulty o 1is eliminated from the equations by squaring
and adding the second and third of equations (3) to give a new set of three
equations.

-1/2 5 2 h
L
Yo \Vp
o
2
. . 2 o
(yz - z}',—)2 + (zx - xz) - 2u6r0<¥;> cosg7o sinig = 0 (5)
Plo

(xy - yx) - v2pero<$L> cos y, cos iy = 0

P/o -

After a solution is found to these equations, the corresponding value of Qg

can be determined from equations (3) by substituting the solution on the right
and solving for sin Qi and cos Qp. The resulting value defines the injection

time so that the vehicle will enter the sphere of influence at the desired point.

If the transfer-trajectory characteristics ((%L) » Loy 7o, ro) and the
o

Y
periselenian distance Rp are specified, equations (4) and (5) define a rela-
tionship between any two of the selenocentric orbital parameters. In particular,
since the geometrical characteristics of the selenocentric hyperbola and the
resulting lunar orbit are of particular interest, it would seem advantageous to
reduce the equations to a form which gives the selenocentric orbital inclination
as a function of the selenocentric orbital nodal position. Obtaining such a
relationship by algebralic manipulation is difficult and, in general, numerical
techniques are required. Solutions of equations (4) and (5) can be generated by
an iterative technique such as the Newton-Raphson method outlined in reference k.

Some typical solutions of equations (4) and (5) are presented in figures 3
and 4 for the five transfer trajectories whose injection conditions are given in
table I. Figure 3 presents the locus of entry points on the sphere of influence
for each trajectory. Each point on the entry-point curve corresponds to a par-
ticular orbital plane as illustrated schematically in the figure. Also, three of
the resulting orbital planes are indicated by dashed lines for each entry-point
locus. The entry point for each orbital plane is indicated by a dot and the
direction of orbital motion in the plane is given by the arrow.
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TABLE T.- CHARACTERISTICS OF TRANSFER TRAJECTORIES

[@eocentric injection radius = 4,259 miles;

injection angle = O]

Vv
Trajectory (v—>
P/o

1.000
-995
.992
-995
.995

BHY oW

1os
deg

30
30
350

>
30

Rp, miles hgars
1,180 50
1,180 62
1,180 81
1,180 62
1,580 62
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Figure 4.- Selenocentric orbital characteristics.



It is seen from figures 3(a), (b), and (c) that the entry-point curve for
each trajectory is nearly circular and the curve becomes more circular and smaller
as the transfer-trajectory energy increases. In addition, the center of the curve
moves toward the earth-moon line and slightly toward the earth-moon pldne as the
energy increases. Comparing figure 3(b) with 3(d) indicates that decreasing the
inclination does not change the size or shape of the curve but moves the center
closer to the earth-moon plane. Finally, from figures 3(b) and 3(e) 1t is seen
that increasing the periselenian distance of the approach hyperbola increases
the size of the entry-point locus but does not displace the center appreciably.

It is to be noted that for the higher energy cases the orbital planes nearly
pass through the center of the region bounded by the entry-point curve. If this
were true for all the orbital planes, then the inclination and nodal position of
the selenocentric orbital plane could be related by the laws of spherical trigo-
nometry to give

tan i sin(Q + éc) = tan 7, (6)

where £, and 17, are the coordinates on the sphere of influence of the center

of the entry-point region. The lower part of figure 4 shows a comparison between
the inclination as a function of nodal position as calculated from equations (%)
and (5) and as calculated from equation (6) by using the indicated values of &,

and n,. The agreement for these three cases seems to indicate that equation (6)

is a valld relation between the inclination and nodal position of the selenocen-
tric orbital plane. Therefore, for a specific transfer trajectory, (75, To»

(%L> s io), equation (6) defines a relationship between Q and i, and only
P/o

one of these elements can be chosen arbitrarily. From the equation and from fig-
ure 5, it is seen that the nodal position can vary over the range 0° to 360o
while the inclination is limited to the range 'ncl £is {180 - |ne ]} The

highly inclined lunar orbits correspond to nodal positions near the entry-point
region and low inclination orbits correspond to nodal positions nearly 90O away
from the entry point.

These results might have been anticipated from the following reasoning.
Suppose it is desired to calculate the entry-point locus for some transfer tra-
jectory and some periselenian distance Rp. First, equations (5) are utilized

to calculate the entry point for the selenocentric hyperbola which has zero angu-
lar momentum; i.e., impacts normal to the moon's surface and therefore B = 0.

Let the location of this normal-impact entry point on the sphere of influence be
denoted by the point (&p,np). The solution of equations (5) also gives a value of

Vg at the point (&p,mn). If this value of Vs 1is substituted into equation (W)
along with the desired value of Rp # 0, a value of B # 0 can be calculated.
For typical transfer trajectories and for Rp not much greater than the lunar
radius, the value of B < 5°. Now consider a new or modified entry point (&,7)

11
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Figure 5.- Illustration of the modified selenoccentric trajectory.

which is displaced B from the normal-impact entry point (gn,nn). The situa-

tion is shown schematically in figure 5 where the plane of the paper represents
the selenocentric plane connecting the two points (gn,qn) and (&£,7). In general,

small changes in the injection time and )y can be made so that the vehicle

passes through this modified entry point without changing any of the other char-
acteristics of the normal-impact transfer trajectory. This displacement of less
than 5° on the lunar sphere of influence represents a small change in position
relative to the earth, hence the geocentric velocity vector of the vehicle at the
point (g,n) will be nearly equal to the velocity vector if the vehicle entered at
the point (gn,nn). Consequently, the velocity of the vehicle relative to the moon

12



is nearly the same at the two points. By assuming the velocity vector at the
two points to be egual, it is seen from the geometry of figure 5 that the angle
between VS and R at the modified entry point is also B; thus, the modified
trajectory will have the desired periselenian distance. It is also seen that
the plane connecting points (gn’nn) and (&,n) will be the plane of motion. The

same arguments hold for any point which is displaced B from the normal-impact
entry point. Hence for a given transfer trajectory and periselenian distance,
the locus of entry points would be expected to approximate a circle with center
at point (gn,qn) and all the orbital planes would be expected to pass through
the center of this circle. Therefore the node and inclination of the resulting
selenocentric orbits will be related by an equation analogous to equation (6)
with &, and 1, Treplaced by tEn and 7p respectively,

tan 1 sin (2 + &p) = tan My (7)

and the geometrical properties of the resulting lunar orbits will depend on the
injection conditions (70, To; <%L> 5 io> through the coordinates of the normal-
P/o

impact entry point (gn,nn)- The next section presents a method for relating

these entry-point locations to the injection conditions.

Approximate Equations and Solutions

The calculation of the normal-impact entry points can be readily obtained
by using the laws of conservation of geocentric energy and angular momentum as
pefore. For this case the selenocentric orbltal parameters (i, Q, 8) have no
meaning; instead the coordinates (g,n) of the entry point will be used to
specify the direction cosines. The normal-impact condition provides an addi-
tional piece of information; namely, that the velocity vector Vs must be par-

allel to R at the entry point. Hence

R R(zléx + my &yt nléz)

R R(—cos n cos g ex + cos n sin & éy + sin n éz)

and

Vg = Vs(cos n cos £ €x - cos n sin g &y - sin 7 éz>

Substitution of R and Vg into equations (1) and (2) and then into (3) gives
for the angular-momentum components:

15



hx =h sin 15 sin Q5 = -RVp sin 7
hy = -h sin 15 cos Qg = DVg sin q (8)
hy =h cos i = -RVy cos 1 cos £ + DV - DVg cos n sin ¢

Likewise equations (5) become

- N
5 1/2

Vg™ + V= = 2VgVp cos 1 sin & - 2ue(R + D° -2RD cos 7 €os g)

2
2
2 (1)
(6] po
, (9)
2, 2 2y 2. \
(R Vm~ + DVg )s1n2q - 2“ero<V‘> cos27O singio =0
P/o
RVp cos 1 cos & + DVg cos 1 sin & + “2per0<%%>o cos y, cos i5 - DVp = ?U
With the substitutions,
W
A== a=2
B = cos n sin g V = COS n cos ¢
these equations take a form which is convenient for the application of a
Newton-Raphson iteration for A, u, and v
) N
2u -1/2 2u 2
7@-2@-( e2>(l+a2—2cw) /2, = 1-<VV-> +1=0
avp roVn Plo
2
2 4 o2 2,2 h 25 = >
(R + )(l S ) - (575) sin“iy = 0 (10)
HA + v + L2 \eos ipb-1=0
DV )

where as before h = VEuerO<¥;> cos 7,-
Pjo

14
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Simultaneous solutions to equations (10) are presented in figure 6 for a
range of injection-velocity ratios and transfer-trajectory inclinations and for
two injection flight-path angles. The loci of entry points are symmetric about
the earth-moon plane and, as can be deduced from the first two of equations (8),
the solutions corresponding to 7 <O are for transfer trajectories for which
the vehicle is ascending at the time of passage through the sphere of influence
and those solutions corresponding to 17 > 0 are trajectories for which the
vehicle is descending. A normal-entry point location from figure 6 is to be
interpreted as representing the center of the entry-point locus for selenocen-
tric trajectories which do not impact normally. The radius of the entry-point
locus, B, is to be calculated from equation (4) by using the appropriate value
of Vg from figure 6. With this interpretation the resulting entry-point loci
will have the same properties as the locl obtained from the more exact calcula-
tions and presented in figure 3. Also note that the value of Vg at the normal-

impact entry point agrees well with the more exact values presented at the top
of figure k4.

For the range of velccities presented here the entry-point region is seen
to represent a small area on the sphere of influence. This fact can lead to some
serious limitations on the types of selenocentric orbits suitable for a given
mission. For example, it is shown in reference 5 that for circumlunar trajec-
tories the maximum allowable inclination of the selenocentric orbital plane is
17°. Hence, if such a fail-safe trajectory is to be utilized as the nominal
lunar-approach trajectory for manned exploration missions, then the landing sites
are restricted to a narrow band about the earth-moon plane. A similar example
of such a restriction on the possible landing sites is afforded by assuming that
the lunar orbit rendezvous technique is utilized for missions with exploration
times of a few days. For this case the inelination of the selenocentric orbital
plane must be a few degrees greater than the latitude of the desired landing site
if an efficient recovery operation is to be possible during the entire explora-
tion period. Under this condition it is clearly seen to be impossible to land
at the midlatitudes (30° to 60°) on the western limb of the moon, for to be able
to do so requires selenocentric orbital inclinations between approximately 30°
to 60° and orbital nodal positions in the first and third quadrants. These lat-
ter requirements are incompatible with the fact that the limited entry-point
area is in the second gquadrant which demands that, for such high inclination
selenocentric orbits, the nodal position must be in the second and fourth
quadrants. A more quantitative description of the possible landing areas can be
determined by using the data of figure 6 once the transfer-trajectory character-
istics and the lunar-landing procedures have been specified.

For the normal impact case the calculation of the required nodal position
for the transfer trajectory becomes a simple matter. Dividing the first two of

equations (8) gives
\
_ [RY m
tan Qo = <D><VS> (11)

Over most of the injection-velocity range, Vg 1s approximately equal to or
greater than Vp (3,361 fps) and hence

17



tan Q@ S a = 0.1498

Therefore, the nodal line for the earth-to-moon transfer trajectory must fall in
the first and third quadrants and be within 10° of the earth-moon line at the
time the vehicle enters the sphere of influence. Comparing the results of equa-~
tion (11) with the more exact results from equations (4) and (5) showed good
agreement except when the inclination of the transfer-trajectory plane became
within a few degrees of 0° or 180°.

Another characteristic of the solution can be obtained from the second
equation of (9) which can be written as

2
v 2
Q“ero(jg> cos<y,
sin n = o 2 = sin ig (12)
ReVy~= + DVg4

Neglecting RS in comparison with D2 and approximating ue/D by Vm2 the

equation can be closely approximated by

2r [V
i ~ \1__9 RIS in 1 1
. D (stVP)o %% 70 ® ° (1)

In reference to figure 6, Vg 1is more strongly dependent on (%L) than on 1,
o]

b
hence this relationship shows that for a transfer trajectory with a given energy
and injection angle the sine of the latitude of the normal impact entry point is
proportional to the sine of the transfer-trajectory inclination. But as shown
previously, the minimum-inclination lunar orbit which can be established from g
glven transfer trajectory has an inclination equal to the latitude of the normal-
impact entry point. Thus the preceding equation gives an approximate relationship
between the minimum-inclination lunar orbit and the transfer-trajectory charac-
teristics. Hence, if it 1s desirable to establish a lunar satellite in the
earth-moon plane, ipin would represent the magnitude of the least orbital plane

change that would be required. As an example, conslder a transfer trajectory
with an energy consistent with that for the close lunar approach circumlunar mis-

sion; that is, (%L> ~ 0.9957. Taking an average value of Vs from figure 6
Pj/o

of about 4,000 fps and substituting into equation (13) gives

(sin 1)g, = 0.16 cos 7o 8in iy

From a propulsion standpoint the most unfavorable conditions for getting into
the earth-moon plane are 15 = 90° and Yo = 0 which would result in a required

plane change of at least 9°. The most favorable conditions are of course 1, =0
or the unrealistic condition y = 90°.
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Once the normal-impact entry point is determined, the geometrical properties
of all possible lunar orbits are given by equation (7),

tan np
sin(Q + &p)

tan i =

The accuracy of this relation when 14 and &, are taken from figure 6 is
indicated in figure 4, for the values of £, and n, used there are actually
the corresponding values of §&p and Tp- Notice that equation (7) does not

depend explicitly on the periselenian distance of the approach hyperbola; how-
ever, the accuracy of equation (7) does depend on this parameter, for if Rp is

large compared with the lunar radius, B will not be a small angle and the
approximations required in deriving the equation will not be valid. Numerical
comparisons with the more exact results from equations (4) and (5) for the median-
energy transfer trajectory, (%L> = 0.995, indicate that for a given Q, equa-
b/o
tion (7) will predict the resulting inclination within 3° for periselenian alti-
tudes up to 500 miles. For values of © where 1 1is not changing rapidly with
Q0 and for the same range of Ry, equation (7) predicts 1 to within 0.2°.

Before figure 6 can be utilized to determine mn, and &, in equation (7,

the injection conditions must be known. The injection-velocity ratio and flight-
path angle are usually determined from launch vehicle considerations and are
generally known within small tolerances. The inclination of the transfer-
trajectory plane to the earth-moon plane is somewhat more arbitrary. Refer-

ence 6 presents a method for calculating the transfer-trajectory inclination as
a function of the launch azimuth at Cape Canaveral and the coasting arc in the
terrestial orbit.

CONCLUDING REMARKS

An analysis has been made of the geometrical characteristics of lunar orbits
which can be established from typical earth-moon transfer trajectories. A
patched-conic approximation was utilized and proved convenient for analyzing the
general qualitative aspects of the problem.

The results of the study indicate that lunar orbits with a wide variety of
geometrical characteristics can be established from essentially the same transfer
trajectory; however, there is a minimm-inclination lunar orbit which can be
established from any given transfer trajectory. An approximate relation shows
that the sine of the minimum inclination is proportional to the product of the
sine of the transfer-trajectory inclination to the earth-moon plane and the
cosine of the injection flight-path angle of the transfer trajectory. For
median-energy transfer trajectories, the most unfavorable situation results 1n
a minimum inclination of about 9°.
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In addition, it was shown that to a first approximation all the orbital
planes have a common line of intersection. This results in a relation between
the lunar orbital inclination and nodal position; hence, only one of these two
parameters can be chosen arbitrarily. For the range of transfer-trajectory
energies considered here, the locus of the common points of intersection of the
selenocentric orbital planes represents a small area on the sphere of influence.
This result can lead to the exclusion of the midlatitudes of the moon's western
limb as possible landling sites if the lunar orbit rendezvous technique is
utilized.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., February 1, 1963.
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